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ABSTRACT

In this thesis, we first define a new security problem, named mPSI (many-to-one private set

interaction), which can find applications in many scenarios where the host of a big database

may be queried by a large number of clients who have small-size queries and want to prevent

both the intentions and results of their queries from being exposed to others. We also propose

a new scheme to solve the mPSI problem. The scheme extends the state-of-the-art oblivious

transfer-based one-to-one PSI schemes, but also embeds the innovative ideas of (1) leveraging

the collaborations between clients to achieve high computational and communication efficiency,

and (2) relying on server-aided secret encryption to hide each client’s private information from

being exposed to either the server or any other client. Extensive theoretical analysis and

experiments have been conducted to evaluate the proposed scheme and compare the scheme

with the state-of-the-art, and the results verify the security and efficiency of our proposed

scheme.
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CHAPTER 1. INTRODUCTION

The problem of private set intersection, or PSI, has been intensively studied since the

introduction of secured computation by Yao [14]. The purpose of PSI is to have two parties

P1 and P2 compute the intersection of their private databases X and Y , without revealing the

private information beyond the result of PSI, which is X ∩ Y . This problem has surged over

the last decade when privacy-preserving data query becomes popular.

One example of typical application scenarios of PSI is as follows. The government may

establish and maintain a database of criminal records, and allows organizations or individuals

to query the database when there is justifiable need. For example, when a company decides to

hire some employees, the company can query the database to find out if the candidates have

criminal records. To protect the privacy of employees, it is desired that the identities of the

candidates are not exposed to the government agency which hosts the database. If the PSI

solution is in place, the company, which possesses a list of candidates, and the host of the

criminal database can figure out their intersection without exposing any other information.

1.1 Motivation

All of the existing PSI schemes [1, 4, 2, 12, 11, 8, 6] are designed for the two-party scenario,

and thus can only support one client to query the database at a time in the afore-described

typical application scenarios. Hence, if a large number of clients need to make query to the

single database, even that the size of each query (e.g., the list of candidates checked by a

company) is typically much smaller than the size of the database, the host of the database

(called server hereafter) has to go through the whole PSI protocol with each of the users

respectively. This could impose heavy, unscalable workload on server. Taking the state-of-the-
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art oblivious transfer-based PSI schemes [2, 12, 11] as example, the heavy workload is caused

by the following reasons.

Communication-wise, the server needs to transfer all the data records, in the forms of

random label, to each client respectively. Note that, the labels cannot be broadcast as they

are different for different clients. This way, to serve n queries from n clients, even that each

query could be very small, the server needs to transfer the labels of all its data records for n

times. Furthermore, according to Pinkas et al. [12], for a server with database size of 2n1 and a

client with query size of 2n2 , each random label must have at least n1 + n2 + λ bits, such that

the false positive rate of PSI can be lower than 2−λ. In particular, let us consider a scenario

where the server has 224 data records (e.g., identities of criminals) in its database, and 100

clients, each having a query size of 16 = 24 (e.g., lists each of 16 candidates). If the security

parameter λ is set to 80, each data record needs to be represented by a label of 100 bits. As

we have computed, the server will need to transfer 216 megabytes of data for each query, and

21 gigabytes in total for all the 100 queries, which is barely practical.

Computation-wise, the server needs to conduct bit-wise exclusive OR operations to compute

each label for a data record.

Considering the same application scenario as above, for each client, 1.8 billion XOR op-

erations must be carried out by the server. Thus, 180 billion XOR operations are needed for

all the 100 clients. Although each XOR operation is considered as a cheap operation, a huge

number of such operations could be expensive, and labeling the same set of data records once

for each client is redundant.

The above observations have motivated us to design a new type of PSI scheme, which

ideally can enable one server to process the queries from multiple clients at a time, and thus

can reduce the redundancy and hence improve the efficiency in terms of both communication

and computation.

More specifically, an experiment is conducted to illustrate how much redundant computation

and communication cost we can save by combining multiple queries into one. Let’s fix the length

of RSA encryption key to be κ = 1024. We assume the security parameter λ = 80. For ease of

discussion, we compare the computation and communication cost under the assumption that,
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Table 1.1 Communication cost comparison at server side

One-to-one PSI schemes [11] Many-to-one PSI schemes

n1 = 24 n1 = 32 n1 = 40 n1 = 24 n1 = 32 n1 = 40

n = 64, n2 = 4 13.5GB 3.6TB 992TB 216MB 58GB 15.5TB

n = 16, n2 = 6 3.44GB 944GB 252TB 220MB 59GB 15.75TB

n = 4, n2 = 8 896MB 240GB 64TB 224MB 60GB 16TB

Table 1.2 Computation cost comparison at server side

One-to-one PSI schemes [11] Many-to-one PSI protocols

n1 = 24 n1 = 32 n1 = 40 n1 = 24 n1 = 32 n1 = 40

n = 64, n2 = 4 9.2 seconds 40 minutes 169 hours

0.16 second 39.5 seconds 2.6 hoursn = 16, n2 = 6 2.4 seconds 10 minutes 41 hours

n = 4, n2 = 8 0.6 second 2.5 minutes 10.6 hours

there are a single server and n clients in the system. Server has 2n1 in its database. Each client

Ci has 2n2 querying records. Table 1.1 and 1.2 shows the communication and computation cost

at the server side to answer a single query.

As we may find from the communication cost and communication cost comparison, when

number of clients increases, the redundancy in transferring server’s database and computation

on server side increases. By combining multiple queries from n clients, we expect to save

communication cost and computation cost dramatically.

1.2 Our Contribution

In this thesis, first we define a new problem called many-to-one private set intersection (i.e.,

mPSI problem), which models the scenarios that a server (i.e., the host of one big database)

needs to interact with multiple clients (i.e., owners of small databases) to find out the common

subsets of data records shared by the server itself and each of the clients, respectively.

Second, we propose an efficient scheme to solve the afore-defined mPSI problem, named

mPSI problem. The proposed scheme extends the idea of the state-of-the-art oblivious transfer-

based one-to-one PSI schemes [2, 12, 11], to ensure that the server cannot know the secrets of

clients from their interactions. Meanwhile, the scheme adopts several novel ideas to make itself

more efficient than the one-to-one PSI schemes. In particular, the scheme requires clients to
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form a group to act like a single virtual client to interact with the server following a protocol

similar to an one-to-one PSI protocol. This way, the afore-discussed heavy communication and

computational workloads on the server can be significantly reduced; hence high efficiency is

accomplished. In addition, a new encryption technique has been proposed in the scheme to

prevent curious clients from knowing other clients’ query intentions in the collaboration.

Third, we conduct theoretical analysis and experiments to evaluate the performance of

mPSI scheme, and compare the performance with that of a state-of-the-art one-to-one PSI

scheme [12]. The results verify the improved efficiency of our designed scheme over the one-to-

one PSI scheme, in solving the mPSI problem.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we briefly review the existing

approaches to solve the private set intersection(PSI) problem, and elaborate some state-of-art

PSI scheme in details. In Chapter 3, we define the many-to-one PSI problem; Specifically, we

give a formal description of the system model, threat model and the design goal of the problem.

In chapter 4, we describe the proposed mPSI scheme in details. Chapter 5 demonstrates the

result of theoretical and experiment based on performance studies. Chapter 6 gives the formal

security analysis of the mPSI scheme. Chapter 7 summarizes the thesis with a discussion of

future work.
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CHAPTER 2. LITERATURE REVIEW

2.1 Overview of Private Set Intersection Solutions

The private set intersection(PSI) has been studied intensively since the introduction of

secured computation by Yao [14]. The approaches to this problem can be mainly classified

into the following categories: naive hashing approach, public key encryption based approach,

circuit based approach, and OT based approach.

Naive hashing compares data items of P1 and P2 in their hash values. It is the most efficient

approach but insecure when database is small or the entropy of database is low. Public key

encryption based approach [1, 4] applies public key cryptosystem to compare data items in

encrypted form. Each party encrypts its own database using a separate public key. Cipher-

text from both parties is exchanged, encrypted again and compared. Public key encryption

based approach in general requires O(n) asymmetric encryption operations. Circuit based ap-

proach [8, 6] builds a function specific garbled circuit that is optimized for PSI operations. For

instance, The Sort-Compare-Shuffle circuit [8] requires each party to sort its local database

before making comparisons. A function specific garbled circuit was built to merge to sorted

list and grab the adjacent elements that are the same. The comparison cost is reduced from

O(n2) to O(n log n) in general. OT based PSI approach [2, 12, 11] is the state-of-art which is

introduced in section 2.3 in details.

2.2 Oblivious Transfer

Oblivious Transfer(OT) protocols [13, 9] allow a sender to send its data to a receiver and

the receiver only receives a part of sender’s data based on its selection. Both receiver’s selection

and sender’s rest of the data are protected as private information in OT protocols. In general,
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OTml denotes an activity of a sender to obliviously transfer m strings, each with a length of

l bits. Sender holds m pairs of l-bit strings (L0
i , L

1
i ) as input to OT, while receiver holds an

m − bit string r = (b1b2 . . . bn). As a result of OTml , receiver receives only the set {Lbii }1≤i≤n

while sender not knowing any information about receiver’s input r.

2.3 OT-based PSI Schemes

The concept of OT-based PSI is first raised by Dong et al. in the work of [2], and improved

in follow-up works [12, 11]. The key abstract of OT-based PSI protocol is to use random labels

to anonymize the identity of the data and enable comparison under random labels. Here, we

review [12] in detailed steps.

During the execution of OT-based protocol, P1 and P2 follows the steps below to compute

the set intersection:

• P1 and P2 agree on a set of hash functions H = {H1, H2, . . . ,Hh}. P2 creates a hash

table T2 of R = h(1 + ε)n2 bins and let P1 know the value of R. Due to the security

parameter ε, P1 does not know the exact size of P2’s database.

• P1 create a hash table T1 of R bins. For each word wi in P1’s database, compute ind(i,k) =

Hk(wi)%R. Append id(wi) to bin ind(i,k).

• P2, on the other hand, maps its elements using a Cuckoo hashing with h hash functions.

More specifically, For each word wj in P2’s database, compute ind(j,k) = Hk(wj)%R.

Place id(wj) at the first empty bin along the index list. In the case when none of those

h positions is available, place wi in a data structure called stash.

• P1 pads each bin of T1 to maxβ items with a dummy element d1 and P2 fills an empty

bin with a dummy d2 in T2(d1 6= d2). For each bin in the hash table, P1 and P2 runs a

OT βl protocol where P1 act as a sender and P2 act as a receiver. P1 generates β pairs

of l-bit random strings, and P2 takes the identity of words in its database id(w) as the

input to OT βl .
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• P2 obliviously obtains the labels corresponding to its input in each bin via OT and

computes the exclusive-or of the labels. Denote an item in P2’s hash table by w =

b1b2 . . . bβ. P2 obtains the set of label {Lbii }1≤i≤β and computes ⊕βi=1L
bi
i as the label for

w. At the meanwhile, P1 XORs the labels corresponding to its input in each bin. All

non-dummy labels are permuted before sending to P2.

• P2 receives the labels from P2 and computes the intersection of XORed labels in plaintext.

The elements in the stash are compared in a separate round. We refer readers to [12] for

more details.

A succeeding work [11] exploits the permutation based hashing to further reduce the length

of id(w). It encodes the index of a hash table where a word w is placed as a part of identity of

w. With the length of id(w) shorten, the communication overhead is reduced.
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CHAPTER 3. PROBLEM STATEMENT

In this chapter, we define the many-to-one private set intersection (mPSI) problem in terms

of system model, threat model, and design goals.

3.1 System Model

We consider a system that consists of a central server denoted as S, and a large set of clients

(say, m clients). Each client in the system is denoted as Ci, where the client’s identity i is a

distinct positive integer. For the purpose of readability, the clients are labelled as C1, · · · , Cm.

The server S owns a dataset D0 that stores s data records denoted as {d0,i|i = 0, · · · , s−1}.

Each client Ci has a dataset Di of ci data records denoted as {di,j |j = 0, · · · , ci−1}, and desires

to find out the intersection D0∩Di in a secured manner; that is, no one other than Ci is allowed

to know the intersection. Here, we assume that s is much greater than each ci. Let p be a large

prime number, and Gp be a cyclic group over Z∗p , with g ∈ Z∗p as the generator. We assume

each data record can be represented, using some coding function, as an element of Gp, and let

β denote the maximum number of binary bits needed to represent any element of Gp. Further,

we assume for any two clients Ci and Cj , their data sets do not intersect; that is, Di ∩Dj = ∅.

3.2 Threat Model

We assume that server S and clients C1, · · · , Cm are semi-honest. That is, each of them

honestly runs the protocol assigned for it to execute, but it may be curious and may take

extra actions (called privacy attacks) attempting to reveal private information of others. In the

privacy attacks, clients may collude, but we assume that the server does not collude with any

client.
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3.3 Design Goals

For a scheme we design to solve the mPSI problem, we aim to achieve two-fold goals:

• Privacy Preservation, which has the following implications:

– The content of the dataset owned by each of the server and clients can not be exposed

to other parties in the system, except for the intersection.

– The intersection D0 ∩Di is known only by client Ci, but not the server or the other

clients Cj .

• Efficiency, which has the following implications:

– As the server is the one who interacts with all clients and handles queries, which is

considered as the bottleneck of the system. Hence, the communication and computa-

tional costs of the server should be as low as possible. This is the major performance

goal.

– The communication cost has a higher priority than the computation cost, since the

network bandwidth is less expandable than the computational power on server side.

– It is also desired that the system-wide overall communication and computational

overheads, which are imposed on the server or clients, are as low as possible.
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CHAPTER 4. mPSI SCHEME: A SOLUTION TO THE mPSI PROBLEM

In this chapter, we present our proposed mPSI scheme to the mPSI problem. Our scheme

is run by a server and a group of clients, and facilitate each of the clients to secretly find out

the intersection between data sets of itself with the server.

The scheme consists of four phases:

• Phase I - System Initialization. During this phase, each of the server and clients conducts

initialization for the data set it possesses.

• Phase II - Encryption of Clients’ Data Records. During this phase, each client encrypts

its data records. The encryption process is aided by the server, but neither the plaintext

nor the ciphertext of a data record is exposed to the server.

• Phase III - Clients’ Collaborative Formation of Hash Table. During this phase, each

group of clients collaborate to construct a hash table, which is then presented to the

server. Like in an oblivious transfer-based one-to-one PSI scheme [12, 11], the hash table

is used as an important vehicle to facilitate the oblivious communication between the

clients and the server.

• Phase IV - Client-Server Interaction for PSI Discovery. This phase follows an interactive

framework similar to that used in an oblivious transfer-based one-to-one PSI scheme.

In this phase, the server first creates per-bit labels for each entry of the hash table,

and obliviously transfers these labels to the clients. Second, each of the server and the

clients uses the per-labels to label their data records. Then, the server sends a randomly-

permuted set of the labels of all its data records to the clients. Finally, each client scans

the labels received from the server to discover the intersection set with its own labels,
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which exactly corresponds to the intersection set between its own and the server’s sets of

data records.

The details of these phases are elaborated in the following.

4.1 Phase I - System Initialization

In this phase, the server encrypts its data records based on a secret (i.e., key) randomly

selected by itself. Specifically, the server first randomly picks an element e from Gp, and keeps

it secret. Then, it encrypts each data record d0,i (where i = 0, · · · , s− 1) that it possesses, into

d̂0,i = de0,i, and keeps the encrypted data records.

Each client Ci works as follows to initialize each of its data record di,j . Specifically, it

randomly constructs β pairs of RSA public and private keys for the data item, and we denote

the key pairs as

(k+i,j,0, k
−
i,j,0), · · · , (k

+
i,j,β−1, k

−
i,j,β−1),

where each k+i,j,t is a public key and each k−i,j,t is a private key for t = 0, · · · , β − 1.

The parties (i.e., the clients and the server) need to have secure peer-to-peer communication

in mPSI. We assume that, when a pair of parties need to communicate securely, they can set

up a secure communication channel, e.g., a TLS/SSL [5] connection.

The clients also need to collaborate by having some information passed along and processed

by all the them sequentially. To facilitate such collaboration, the clients shall agree on a

sequence following which information will flow through them. In practice, the sequence could

be determined based on the order of the users’ IP addresses. For simplicity, we denote the

sequence as C1 → C2 → · · · → Cm.

4.2 Phase II - Encryption of Clients’ Data Records

Each client Ci encrypts its data records {di,j |j = 0, · · · , ci − 1} as follows:

• First, it randomly picks numbers {ri,j |j = 0, · · · , ci − 1} from Gp.
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• Second, it computes d′i,j = d
ri,j
i,j for each di,j , and then sends the set {d′i,j |j = 0, · · · , ci−1}

to the server,

• Upon receiving the set of data, the server computes d′′i,j = (d′i,j)
e for each d′i,j and returns

{d′′i,j |j = 0, · · · , ci − 1} to Ci.

• Finally, Ci computes d̂i,j = (d′′i,j)
1/ri,j for each received d′′i,j , and records {d̂i,j |j =

0, · · · , ci − 1}.

Note that, the encryption process is aided by the server; however, due to the randomness of

number ri,j (j = 0, · · · , ci − 1) selected by client Ci, neither the original data record di,j nor

the encrypted data record d̂i,j is exposed to the server.

4.3 Phase III - Clients’ Collaborative Formation of Hash Table

In this phase, clients first form groups and then each group can act like a single virtual client

to interact with the server following a protocol similar to an oblivious transfer-based one-to-one

PSI scheme. Various procedures could be used for clients to find their group mates, and they

may utilize the trust built among them during the past experience in the group formation.

Since this is not our focus in this thesis, we skip the group formation detail, and assume a

group has been formed to include clients C1, C2, · · ·, Cm, without loss of generality.

Once a group has been formed, the participating clients in the group collaborate as follows

to form a hash table.

First, the clients of the group should agree on a pair of public random hash functions H0(.)

and H1(.). In practice, this may be accomplished in the following manner: each client randomly

generates a pair of random strings; all these pairs are concatenated to form a pair of long random

strings denoted as IV0 and IV1; then, Hb(x) for b ∈ {0, 1} is defined as SHA3(IVb||x).

Second, each client Ci reports the number of data records that it possesses to every other

clients. Based on the reports, each client gets to know the total number of data records
∑m
i=1 ci

and then agrees on the size of a hash table to be l = (1 + ρ)
∑m
i=1 ci, where ρ is a system

parameter of the scheme.
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Third, each client applies the hash functions on its encrypted data records {d̂i,j |j = 0, · · · , ci−

1} to obtain {(hi,j,0 = H0(d̂i,j) mod l, hi,j,1 = H1(d̂i,j) mod l)|j = 0, · · · , ci−1}, and distributes

this set to every other clients. This way, each client gets to know the hash pairs of all the data

records owned by the clients. Based on these hash values, one specific client (assumed to be

C1 without loss of generality) can apply the Cuckoo hashing strategy [10] to map each data

record to one entry of the hash table, such that: (1) for each data record di,j , it is mapped to

either entry hi,j,0 or hi,j,1, and (2) no two data records are mapped to the same entry. In the

case that mapping conflicts cannot be avoided, some data records will be temporarily skipped

to avoid the conflicts, and the skipped records will be processed in an extra round. Then, C1

broadcasts the final mapping strategy to all the clients in the group.

Fourth, the hash table is passed from C1 to Cm one by one, to allow each client Ci to fill in

its information to the hash table. Specifically, supposing client Ci’s data record d is mapped

to entry k of the hash table, Ci acts as follows to fill in entry k: Let the binary representation

of d be

b0b1 · bβ−1,

where bt ∈ {0, 1} for t = 0, · · · , β − 1. Let the sequence of RSA public keys picked by Ci for d

be

k+0 , · · · , k
+
β−1;

recall that these keys are selected during the system initialization phase. Ci fills β pairs of

public keys, denoted as

(PU0,0, PU0,1), · · · , (PUβ−1,0, PUβ−1,1)

to entry k. In particular, each pair of PUt,0 and PUt,1 is computed according to the following

rules:

• Case I: bt = 0. PUt,0 = k+t . Supposing PUt,0 = (n, x), PUt,1 = (n, x−1 mod n).

• Case II: bt = 1. PUt,1 = k+t . Supposing PUt,1 = (n, x), PUt,0 = (n, x−1 mod n).

The key idea of this step is to have the public keys generated during the system initialization

phase to be mapped to the bit value of data in each bit position, while the other one must be
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a random key that the client does not have the corresponding private key. Hence later, when

per-bit labels are generated and encrypted by the server the client can only decrypt and get

the label corresponding to its bit value at all bit positions.

After Cm has filled in public key pairs for each of its data record, the client also fills every

empty entry. Specifically, each empty entry k should be filled with a sequence of β pairs of

public keys denoted as (PU ′0,0, PU
′
0,1), · · · , (PU ′β−1,0, PU ′β−1,1) that are constructed according

to the following rule: For each t = 0, · · · , β − 1,

• randomly selects an RSA public key (n′, y) and assigns it to PU ′t,0;

• PU ′t,1 = (n′, y−1 mod n′).

Finally, the fully-filled hash table, together with hash functions H0(.) and H1(.), are sent to

the server.

4.4 Phase IV - Client-Server Interactions for PSI Discovery

This phase includes five steps:

• The server randomly creates per-bit labels for every entry of the hash table.

• The server obliviously transfer the per-bit labels to the group of clients.

• The server labels its data records using the previously-created per-bit labels, and sends

the data record labels to the clients.

• Each client scans the labels to identify the intersection between its own data records and

the server’s data records.

The details of the these step are presented in the following.

4.4.1 Server’s Random Creation of Per-bit Labels

For each entry j (j = 0, · · · , l − 1) of the hash table, the server randomly picks β pairs of

per-bit labels, denoted as

(L0
j,0, L

1
j,0); (L0

j,1, L
1
j,1); · · · ; (L0

j,β−1, L
1
j,β−1).
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Here, each Lbj,t (b ∈ {0, 1}, j ∈ {0, · · · , l − 1} and t ∈ {0, · · · , β − 1}) is a γ-bit number, where

γ is a security parameter.

4.4.2 Server’s Oblivious Transferring of Per-bit Labels to the Clients

For each entry j (j = 0, · · · , l − 1) of the hash table, the server encrypts the per-bit labels

it picks for the entry and encrypts them with the RSA public keys carried in the entry.

Specifically, each per-bit label pair (L0
j,t, L

1
j,t) is encrypted to (enc(PU0

j,t, L
0
j,t), enc(PU

1
j,t, L

1
j,t)),

where enc(PU,L) represents the RSA encryption of L using public key PU . Hence, each entry

j of the hash table is changed from

(PU0
j,0, PU

1
j,0); (PU0

j,1, PU
1
j,1); · · · ; (PU0

j,β−1, PU
1
j,β−1)

to

(enc(PU0
j,0, L

0
j,0), enc(PU

1
j,0, L

1
j,0));

(enc(PU0
j,1, L

0
j,1), enc(PU

1
j,1, L

1
j,1));

· · · ;

(enc(PU0
j,β−1, L

0
j,β−1), enc(PU

1
j,β−1, L

1
j,β−1)).

After the replacement, server sends the hash table to C1, and the hash table is passed along

the group of clients one by one. When a client Ci receives the table, it works on each entry

j where it has filled RSA public keys. Without loss of generality, suppose Ci filled this entry

because H0(d) mod l = j, where d is its data record, and Ci desires to find out if d is in the data

set of the server. Also, assume d can be represented in a string of binary bits as b0b1 · · · bβ−1.

More specifically, Ci works on entry j in the following two steps:

• Obtaining Labels. According to the algorithm by which Ci computed the RSA public keys

filled to entry j, Ci should have known the public keys

PU b0j,0, PU
b1
j,1, · · · , PU

bβ−1

j,β−1,

and their corresponding RSA private keys the we denote as

PRb0j,0, PR
b1
j,1, · · · , PR

bβ−1

j,β−1.
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Hence, Ci can decrypt the entry to obtain the following labels:

Lbtj,t = dec(PRbtj,t, enc(PU
bt
j,t)),

where t = 0, · · · , β−1 and dec(PR, x) denotes the decryption of x using RSA private key

PR.

• Labeling Data Records. Upon obtaining the labels, Ci further labels its data record d to

L(d) = ⊕β−1t=0 L
bt
j,t.

4.4.3 Server’s Labeling of Data Records and Sending of Labels

After randomly generating labels, the server also labels all its data records.

For each data record d, which is b0b1 · · · , bβ−1 if represented as a binary string, it is mapped

to entries H0(d) mod l and H1(d) mod l through using hash functions H0(.) and H1(.). For

each entry j ∈ {H0(d) mod l,H1(d) mod l}, one label of d is computed as

L(d) = ⊕β−1t=0 L
bt
j,t,

similar to the way in which the clients label their data records.

Once every data record has been labeled, all these labels of data records within the same

entry are randomly shuffled, and then broadcast to the group of clients in the block of entries.

Random dummy labels are generated to make the number of data items in each entry uniform.

4.4.4 Client’s Discovering of Set Intersection

Upon receiving the broadcast labels, each client Ci in the group scan the labels to find

the overlapping with the labels of its own data records. The set of data records whose labels

overlap is then identified as the intersection between the data sets of this client and the server.

Note that, since the labels are grouped in the unit of entries, each client only look for labels

at the entries where the client has placed its queries to. For instance, without loss of generality,

suppose Ci has a data item di,j mapped to entry k, i.e., H0(di,j) = k (if Ci uses H0(.) for di,j),

the overlapping of the label about di,j will only happen in the kth entry of the labels broadcast

by the server. That saves a great amount of communication overhead on the client side.
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CHAPTER 5. PERFORMANCE EVALUATION

We conduct both the theoretical analysis and the experiment to evaluate the performance

of our proposed mPSI scheme. In this chapter, we present the result of both asymptotic

computation and communication cost, along with the experiment result. We also simulate one

of the state-of-art one-to-one PSI protocol [12], and make comparison between mPSI and the

work of [12] under the same experimental setting. Our results indicate a significant advantage

of using many-to-one PSI scheme over one-to-one PSI scheme in the multi-client setting.

5.1 Asymptotic Analysis

First, we conduct theoretical analysis to obtain the asymptotic communication and compu-

tational costs of the proposed mPSI scheme, and compare with the state-of-the-art one-to-one

PSI scheme [12]. For the simplicity of discussion, we assume all clients have the equal database

size, denoted by c. Table 5.1, 5.2 and 5.3 demonstrate the result of comparison. As we can

find from the tables, mPSI incurs lower server-side communication and computational costs

than the one-to-one PSI scheme, due to the integration of clients’ datasets; the improvement

becomes more significant when s (i.e., the size of the server’s dataset) or m (i.e., the number of

clients in a group) increases. Meanwhile, mPSI incurs slightly higher communication and com-

putational costs at the client side, than the one-to-one PSI scheme, due to the overheads caused

Table 5.1 Bandwidth Consumption by The Server and Each Client.

Server Each Client

1-to-1 PSI O(m · s · γ +m · c · β · γ) O(s · γ + c · β · γ)

mPSI O(s · γ +m · c · β · γ) O(s · γ +m · c · β · γ)
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Table 5.2 One-to-One PSI Computational Cost.

Server Each Client

RSA Key Generation – O(c · β)

RSA Encryption O(m · c · β) –

RSA Decryption – O(c · β)

XOR O(s · β · γ) O(c · β · γ)

Table 5.3 mPSI Computational Cost.

Server Each Client

RSA Key Generation – O(c · β)

RSA Encryption O(m · c · β) –

RSA Decryption – O(c · β)

XOR O(s · β · γ) O(c · β · γ)

Modulus EXP O(m · c+ s) O(c)

by the collaborations among the clients. We argue that, the tradeoff is beneficial, because it is

the server, not the clients, that is the bottleneck of the system. More significantly, when the

size of databases are asymmetric, i.e., when c � s(the application scenarios we mentioned in

introduction), the saving in server side over-weighs the overhead on each client.

5.2 Experiment Results

First, we carried out a benchmark for basic cryptographic operations used in the mPSI

scheme. This includes the RSA key generation(KeyGen), encryption(Enc), decryption(Dec).

Table 5.4 shows the benchmark results of the three basic crypto operations used in mPSI

scheme on the test machine. From the results, we can find that RSA key generation is com-

putationally more intensive than RSA encryption and decryption. Since RSA key generation

is largely used during the system initialization, we predict that phase I of mPSI scheme will

consume most of the time in our simulation.

To evaluate the performance of our proposed scheme in more practical settings, we also

implement the both mPSI and the one-to-one PSI scheme [12] in Java, and conduct experiments
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Table 5.4 Time to perform repeated operations for 1000 times (unit: second)

Key Length KeyGen Enc Dec

512 bits 9.5 0.024 0.22

1024 bits 47.2 0.068 1.13

2048 bits 371.1 0.181 6.1

Figure 5.1 Client side computation comparison between one-to-one PSI scheme and our

scheme.
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Figure 5.2 Server side computation comparison between one-to-one PSI scheme and our

scheme.

to compare their computational costs. In the experiments, we use the computes with the same

configurations for the server and each client: the computer has a CPU clocking @2.5GHz, with

8 gigabyte of RAM and solid state as the hard drive.

For the purpose of easy comparison, we fix the length of RSA keys to be 1024 and the data

length β = 40, and make client’s database size c, number of users in the system, m, and the

server’s database size s, to be variables. We assume the all clients have the same database size,

which is c.

The results are reported in Figures 5.1, 5.2. As we can see, the experimental results are

consistent with the above theoretical analysis results.
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CHAPTER 6. SECURITY ANALYSIS

In this chapter, we conduct the security analysis of our proposed mPSI scheme. The mPSI

scheme is secure if it has the following three properties

• Security Property I: Server cannot infer any information about the data item of client

Ci’s database except for the intersection.

• Security Property II: Any client Ci cannot infer any information about data items of

server’s database except for the intersection.

• Security Property III: Any client Ci cannot infer any information about data items of

Cj ’s database for i 6= j.

The first two security properties are the same as the security properties of one-to-one PSI

schemes. The third security property is unique for many-to-one PSI protocols because our

mPSI involves multiple clients in the system, and each client Ci’s database information is kept

secret from other clients Cj . In this chapter, we discuss the security proofs for each of the

security property mPSI is intended to achieve.

6.1 Security Property I

To prove that server cannot infer any information about client Ci’s database, we divide the

scheme into two stages:

• The first stage includes the phases of scheme before the submission of hash table to server,

i.e., phase I, II, and III.

• The second stage includes the phase of server-client interaction to find out the intersection,

i.e, phase IV.
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During the first stage, the view from a server about clients’ database, is a collection of

data records encrypted with clients’ random secret. That is, V iewS = {d′i,j = d
ri,j
i,j |i =

1, 2, · · · ,m, j = 0, 1, · · · , ci − 1}. The secret ri,j is uniformly selected from the finite field

Z∗p . Then, the inverse [d′i,j ]
1/ri,j is uniformly distributed over Z∗p . Hence, the probabil-

ity for the adversary’s algorithm A to correctly guess di,j based on V iewS is 1/p, that is,

Prob[A(V iewS) = di,j ] = 1/p.

In the second stage, clients in the system act like a virtual client and interact with the

server in the way defined by one-to-one OT-based PSI schemes. The security proof of this part

is exactly the same as that of [12].

Combining the proof of stage one and two, we conclude that server cannot infer information

about client’s database, except for the intersection.

6.2 Security Property II

To prove that client cannot infer and information about server’s database, we first take a

look at the interactions between clients and server in the mPSI scheme. When interacting with

the server, all clients in the mPSI scheme act like a virtual client and send queries together

in a hash table. This makes the proof of the second security goal to be exactly the same as

OT-based one-to-one PSI schemes. Here, we refer readers to [12] for the security proof of the

second security goal.

6.3 Security Property III

To prove that mPSI scheme achieves the third security goal, we first give an intuition about

our overall approach, and then we define the behavior of an adversary client. after which we

give a formal security definition with a proof.

6.3.1 Intuition for the Security Analysis

Intuitively, the view of an adversary client is a set of plaintext-ciphertext pairs that it can

query the server for intersection. Let’s denote the set as Q = {〈xi, xei 〉|i = 0, · · · , c − 1}. The
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purpose of an adversary client is to figure out that, if an arbitrary data item y is in an innocent

client Ci’s database.

An adversary algorithm A is defined in section 6.3.2 based on the view of an adversary

client to determine if H(ye) = z, where z is an index of the hash table that an innocent client

has query in.

Given this defined algorithm A, we formally layout a theorem and a proof to reduce adver-

sary’s algorithm A to matching Deffie-Hellman problem(MDHP) [3, 7].

6.3.2 Behavior of An Adversary Client

Here, we model the behavior of the adversary as algorithm A({〈xi, xei 〉|i = 0, · · · , c −

1}, H(·), y, l, z), where

• s is randomly picked from Z∗p , which is the secret kept by the server;

• each xi is randomly picked from Gp, which reprents a data item queried by the adversary

client or its colluding coalition;

• y is randomly picked from Gp, which represents the data item that the adversary wants

to figure out if is queried by an innocent client;

• l is an even number that represents the number of entries in the hash table;

• H(·) : Gp → {0, · · · , l − 1} is a random hash function used to create the hash table; and

• z ∈ {0, · · · , l − 1} represents an entry index of the hash table.

If the attack succeeds, the output of algorithm A is:

• false iff H(ye) ∈ {z + 1 mod l, · · · , z + l/2 mod l}; or

• true otherwise.

6.3.3 Theorem and Proof

In this section, we prove that our mPSI scheme is secure from an adversary client by

reducing the adversary algorithm A to the MDHP problem.
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First, we restate a formal definition of MDHP problem [3, 7].

Definition. In Gp, given (ga0 , ga0b0 , ga1 , ga1b1) and (gbr , gb1−r), where a0, b0 ∈ Z∗p and r ∈

{0, 1}, find r.

Theorem. Suppose the adversary client succeeds with an advantage of ε. That is, Adv(A) = ε,

or more specifically,

Pr[A({〈xi, xei 〉|i = 0, · · · , c−1}, H(·), y, l, z) ≡ (H(ye) 6∈ {z+1 mod l, · · · , z+l/2 mod l})] = 0.5+ε,

with time complexity Θ(t). Then, the MDHP problem can be solved with Algorithm Â, which

is defined as follows, with advantage 0.5ε and time complexity Θ(t).

In order to prove the theorem, we need to construct an algorithm Â based on the adversary

algorithm A to solve the MDHP problem. In the following, we first describe Â, and then present

the complete proof.

6.3.3.1 Construction of Algorithm Â

First, based on ga0 and gbr , the input to one running of algorithm A can be constructed as

in the following.

Numbers r0,0, · · · , r0,c−1 are randomly picked from Z∗p . Let e0 = a0. For each i ∈ {0, · · · , c−

1}, xi = gr0,i and xe0i = (ga0)r0,i . Let y = gbr .

Let the output of this running of A be φ0.

Second, based on ga1 and gbr , the input to another running of algorithm A can be con-

structed as in the following.

Numbers r1,0, · · · , r1,c−1 are randomly picked from Z∗p . Let e1 = a1. For each i ∈ {0, · · · , c−

1}, xi = gr1,i and xe1i = (ga0)r1,i . Let y = gbr .

Let the output of this running of A be φ1.

Further, let us define a boolean function τ(x, y) with x ∈ Gp and y ∈ {0, · · · , l − 1} as

τ(x, y) ≡ H(x) ∈ {y − (l/2− 1) mod l, y − (l/2− 2) mod l, · · · , y}.

Third, based on the output of the two runs of algorithm A, the value of r (i.e., the solution

to the MDHP problem) is determined according to the rules represented by the table 6.1.
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Table 6.1 Rules to determine r

φ0 = τ(ga0br , z) φ1 = τ(ga1br , z) r

true false 0

false true 1

false false 0 or 1 equally possible

true true 0 or 1 equally possible

6.3.3.2 Proof

First, construct algorithm Â as described in section 6.3.3.1. Next, let us analyze the prob-

ability that the value of r can be corrected obtained using the above rule.

• Case I: r=0, which occurs with probablity 0.5. In this case, if the first running of A

produces correct output (which occurs with probability 0.5+ε according to the assumption

of A’s advantage), φ0 = τ(ga0br , y); otherwise (which occurs with probability 0.5 − ε),

φ0 6= τ(ga0br). Meanwhile, φ1 could be equal to or not equal to τ(ga1br , y) with the same

probability of 0.5. Hence, according to Table 6.1, we have the following two tiers of

subcases:

– Subcase I-1: the first running of A produces correct output.

∗ Subcase I-1-a: φ1 = τ(ga1br , y). In this subcase, Â outputs 0 or 1 with equal

probability.

∗ Subcase I-1-b: φ1 6= τ(ga1br , y). In this subcase, Â outputs 0.

Note that, either of the above subcases (i.e., I-1-a and I-1-b) occurs with the prob-

ability of 0.5 · (0.5 + ε) · 0.5.

– Subcase I-2: the first running of A produces incorrect output.

∗ Subcase I-2-a: φ1 = τ(ga1br , y). In this subcase, Â outputs 1.

∗ Subcase I-2-b: φ1 6= τ(ga1br , y). In this subcase, Â outputs 0 or 1 with equal

probability.

Note that, either of the above subcases (i.e., I-2-a and I-2-b) occurs with the prob-

ability of 0.5 · (0.5− ε) · 0.5.
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• Case II: r=1, which occurs with probability 0.5. The analysis in this case is similar to

Case I. If the second running of A produces correct output (which occurs with probability

0.5 + ε according to the assumption of A’s advantage), φ1 = τ(ga1br , z); otherwise (which

occurs with probability 0.5− ε), φ1 6= τ(ga1br , z). Meanwhile, φ0 could be equal to or not

equal to τ(ga0br , z) with the same probability of 0.5. Hence, according to Table 6.1, we

have the following two tiers of subcases:

– Subcase II-1: the second running of A produces correct output.

∗ Subcase II-1-a: φ0 = τ(ga0br , z). In this subcase, Â outputs 0 or 1 with equal

probability.

∗ Subcase II-1-b: φ0 6= τ(ga0br , z). In this subcase, Â outputs 1.

Note that, either of the above subcases (i.e., II-1-a and II-1-b) occurs with the

probability of 0.5 · (0.5 + ε) · 0.5.

– Subcase II-2: the second running of A produces incorrect output.

∗ Subcase II-2-a: φ0 = τ(ga0br , z). In this subcase, Â outputs 0.

∗ Subcase II-2-b: φ1 6= τ(ga0br , z). In this subcase, Â outputs 0 or 1 with equal

probability.

Note that, either of the above subcases (i.e., II-2-a and II-2-b) occurs with the

probability of 0.5 · (0.5− ε) · 0.5.

To summarize the above analysis, Algorithm Â outputs a correct r occurs with the probability

of 0.5 + 0.5ε. Hence, the advantage for Â to solve the MDHP problem is 0.5ε.

Therefore, the theorem is proved.
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CHAPTER 7. CONCLUSION

7.1 Summary

In this thesis, we have defined a new security problem, named mPSI problem, to model

the application scenarios where the host of a big database may be queried by a large number

of clients who have small-size queries and want to protect both the intentions and results

of their queries. We have also proposed a new scheme to solve the mPSI problem. The

scheme extends the state-of-the-art oblivious transfer-based one-to-one PSI schemes, but also

embeds the innovative ideas of (1) leveraging the collaborations between clients to achieve high

computational and communication efficiency, and (2) relying on server-aided secret encryption

to hide each client’s private information from being exposed to either the server or any other

client. Extensive theoretical analysis and experiments have been conducted to evaluate the

performance of the proposed scheme and compare the scheme with the state-of-the-art, and

the results verify the efficiency of our proposed scheme.

7.2 Future Works

More research efforts are demanded for this new research problem. For example, our pro-

posed scheme relies on the assumption that the server does not collude with any client. In

the future work, we plan to develop more secure schemes without such assumption. In addi-

tion, our mPSI scheme requires server to pre-compute the encryption of its database per-round

of communication. As the server’s database size gets larger, server side cost(even if it is pre-

computation) will be high. More researches are demanded to look for a replacement of database

encryption on server’s side.
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